When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the

 tangent line having slope m to the parabola.[Geometric Approach]준선이 $y=-p$ 이고 초점이 $(0, p)$ 일 때, 포물선에서의 기울기가 m 인 접선의 방정식을 구하여라.[기하적 접근]
(When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach])

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

$$
y=-p
$$

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

$$
\mathrm{F}(0, p)
$$

$$
y=-p
$$

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

$$
y=-p
$$

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

$$
\begin{aligned}
& m \times m p-0+n=0 \\
& n=-p m^{2}
\end{aligned}
$$

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

$$
\begin{aligned}
& m \times m p-0+n=0 \\
& n=-p m^{2} \\
& \quad \therefore y=m x-p m^{2}
\end{aligned}
$$

When a directrix is $y=-p$ and a focus is $(0, p)$, find the equation for the tangent line having slope m to the parabola.[Geometric Approach]

Github:
https://min7014.github.io/math20220328001.html
Click or paste URL into the URL search bar, and you can see a picture moving.

