복소수
(Complex Numbers)

Complex Numbers

Complex Numbers

A complex number is a number

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers and i is the imaginary unit,

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers and i is the imaginary unit, satisfying $i^{2}=-1$.

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers and i is the imaginary unit, satisfying $i^{2}=-1$.
$\mathbb{C}=\left\{z \mid z=a+b i, a, b \in \mathbb{R}, i^{2}=-1\right\}$

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers and i is the imaginary unit, satisfying $i^{2}=-1$.
$\mathbb{C}=\left\{z \mid z=a+b i, a, b \in \mathbb{R}, i^{2}=-1\right\}$
The real number a in the complex number $z=a+b i$

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers and i is the imaginary unit, satisfying $i^{2}=-1$.
$\mathbb{C}=\left\{z \mid z=a+b i, a, b \in \mathbb{R}, i^{2}=-1\right\}$
The real number a in the complex number $z=a+b i$ is called

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers and i is the imaginary unit, satisfying $i^{2}=-1$.
$\mathbb{C}=\left\{z \mid z=a+b i, a, b \in \mathbb{R}, i^{2}=-1\right\}$
The real number a in the complex number $z=a+b i$ is called the real part of z

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers and i is the imaginary unit, satisfying $i^{2}=-1$.
$\mathbb{C}=\left\{z \mid z=a+b i, a, b \in \mathbb{R}, i^{2}=-1\right\}$
The real number a in the complex number $z=a+b i$ is called the real part of z, and the real number b

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers and i is the imaginary unit, satisfying $i^{2}=-1$.
$\mathbb{C}=\left\{z \mid z=a+b i, a, b \in \mathbb{R}, i^{2}=-1\right\}$
The real number a in the complex number $z=a+b i$ is called the real part of z, and the real number b is called

Complex Numbers

A complex number is a number that can be expressed in the form $z=a+b i$, where a and b are real numbers and i is the imaginary unit, satisfying $i^{2}=-1$.
$\mathbb{C}=\left\{z \mid z=a+b i, a, b \in \mathbb{R}, i^{2}=-1\right\}$
The real number a in the complex number $z=a+b i$ is called the real part of z, and the real number b is called the imaginary part.

Github:
https://min7014.github.io/math20210124001.html
Click or paste URL into the URL search bar, and you can see a picture moving.

