합집합, 교집합, 차집합, 여집합, 전체집합

(Union, Intersection, Relative Complement(Difference), Universal Set, Absolute Complement(Complement))

Union, Intersection, Relative Complement(Difference), Universal Set, Absolute Complement(Complement)

- $A \cup B$:

Union, Intersection, Relative Complement(Difference), Universal Set, Absolute Complement(Complement)

- $A \cup B$: the union of

Union, Intersection, Relative Complement(Difference), Universal Set, Absolute Complement(Complement)

- $A \cup B$: the union of A and B

Union, Intersection, Relative Complement(Difference), Universal Set, Absolute Complement(Complement)

- $A \cup B$: the union of A and B
$A \cup B$

Union, Intersection, Relative Complement(Difference), Universal Set, Absolute Complement(Complement)

- $A \cup B$: the union of A and B

$$
A \cup B=
$$

Union, Intersection, Relative Complement(Difference), Universal Set, Absolute Complement(Complement)

- $A \cup B$: the union of A and B

$$
A \cup B=\{x
$$

Union, Intersection, Relative Complement(Difference), Universal Set, Absolute Complement(Complement)

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid
$$ Complement(Complement)

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A
$$ Complement(Complement)

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or }
$$ Complement(Complement)

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$ Complement(Complement)

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: Complement(Complement)
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of Complement(Complement)
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B Complement(Complement)
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B $A \cap B$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B
$A \cap B=$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and }
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$:
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- $A-B$: the relative complement
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- $A-B$: the relative complement of B
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- $A-B$: the relative complement of B with respect to
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- $A-B$: the relative complement of B with respect to A
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply,
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B
$A-B$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B
$A-B=$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B
$A-B=\{x$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B

$$
A-B=\{x \mid
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B

$$
A-B=\{x \mid x \in A
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B

$$
A-B=\{x \mid x \in A \text { and }
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B

$$
A-B=\{x \mid x \in A \text { and } x \notin B\}
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set :
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration,
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C}
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- $A^{C}(U$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- $A^{C}(U$ is the universal set.) :
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- $A^{C}(U$ is the universal set.) : the absolute complement
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- $A^{C}(U$ is the universal set.) : the absolute complement, or, simply,
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C} (U is the universal set.) : the absolute complement, or, simply, complement
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C} (U is the universal set.) : the absolute complement, or, simply, complement of a set A.
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C} (U is the universal set.) : the absolute complement, or, simply, complement of a set A.
$A^{C}=\{$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C} (U is the universal set.) : the absolute complement, or, simply, complement of a set A.
$A^{C}=\{x$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C} (U is the universal set.) : the absolute complement, or, simply, complement of a set A.

$$
A^{C}=\{x \mid
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C} (U is the universal set.) : the absolute complement, or, simply, complement of a set A.

$$
A^{C}=\{x \mid x \in U
$$

- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C} (U is the universal set.) : the absolute complement, or, simply, complement of a set A.
$A^{C}=\{x \mid x \in U$ and
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C} (U is the universal set.) : the absolute complement, or, simply, complement of a set A.
$A^{C}=\{x \mid x \in U$ and $x \notin A\}$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- A^{C} (U is the universal set.) : the absolute complement, or, simply, complement of a set A.
$A^{C}=\{x \mid x \in U$ and $x \notin A\}=$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- $A^{C}(U$ is the universal set.) : the absolute complement, or, simply, complement of a set A.
$A^{C}=\{x \mid x \in U$ and $x \notin A\}=U-A$
- $A \cup B$: the union of A and B

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

- $A \cap B$: the intersection of A and B

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

- $A-B$: the relative complement of B with respect to A or, simply, the difference of A and B $A-B=\{x \mid x \in A$ and $x \notin B\}$
- Universal Set : the set of all elements under consideration, denoted by capital U.
- $A^{C}(U$ is the universal set.) : the absolute complement, or, simply, complement of a set A.
$A^{C}=\{x \mid x \in U$ and $x \notin A\}=U-A$

Union, Intersection, Relative Complement(Difference), Universal Set, Absolute Complement(Complement)

YouTube: https://youtu.be/px3qG6opK-Y
Click or paste URL into the URL search bar, and you can see a picture moving.

