Set and Element(Member)

집합과 원소
(Set and Element(Member))

- Set and Element(Member):
- Set and Element(Member): a set
- Set and Element(Member): a set may be viewed as
- Set and Element(Member): a set may be viewed as any well-defined collection of
- Set and Element(Member): a set may be viewed as any well-defined collection of objects.

Set and Element(Member)

- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set:
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set :
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ :
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)($
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)(\mathrm{S}$
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)(\mathrm{S}$ is
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S$:
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S$:
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B$:
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B.
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B. $x \in A$
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B. $x \in A \Rightarrow$
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B.

$$
x \in A \Rightarrow x \in B
$$

- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B.
$x \in A \Rightarrow x \in B$
- $A=B$:
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B.
$x \in A \Rightarrow x \in B$
- $A=B: A$ and B
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B.
$x \in A \Rightarrow x \in B$
- $A=B: A$ and B are equal.
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B.

$$
x \in A \Rightarrow x \in B
$$

- $A=B: A$ and B are equal.
$A \subset B$
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B.
$x \in A \Rightarrow x \in B$
- $A=B: A$ and B are equal.
$A \subset B$ and
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B.

$$
x \in A \Rightarrow x \in B
$$

- $A=B: A$ and B are equal.
$A \subset B$ and $B \subset A$
- Set and Element(Member): a set may be viewed as any well-defined collection of objects. the objects are called the elements or members of the set.
- Finite set : a set that has a finite number of elements
- Infinite set : a set which is not a finite set
- ϕ : the set with no elements is the empty set or null set.
- $n(S)$ (S is a finite set.) :the number of elements of S
- $a \in S: a$ is a member of S.
- $a \notin S: a$ is not a member of S.
- $A \subset B: A$ is a subset of (or included in) B.

$$
x \in A \Rightarrow x \in B
$$

- $A=B: A$ and B are equal.
$A \subset B$ and $B \subset A$

END

