Function Composition

Function Composition

Start

Function composition

Function Composition

Start

Function composition is

Function Composition

Start

Function composition is the pointwise application

Function Composition

Start

Function composition is the pointwise application of

Function Composition

Start

Function composition is the pointwise application of one function

Function Composition

Start

Function composition is the pointwise application of one function to the result of

Function Composition

Start

Function composition is the pointwise application of one function to the result of another

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function.

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z .

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x.

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ",

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ",

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with $f^{\prime \prime}$,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ",

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ",

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ".

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative.

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions.

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction between the choices of

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction between the choices of placement of

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X .
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction between the choices of placement of parentheses,

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction between the choices of placement of parentheses, they

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction between the choices of placement of parentheses, they may be left off

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction between the choices of placement of parentheses, they may be left off without causing

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction between the choices of placement of parentheses, they may be left off without causing any ambiguity.

Function Composition

Start

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction between the choices of placement of parentheses, they may be left off without causing any ambiguity.

Function Composition

- home

Function composition is the pointwise application of one function to the result of another to produce a third function. For instance, the functions $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ can be composed to yield a function which maps x in X to $g(f(x))$ in Z. Intuitively, if z is a function g of y, and y is a function f of x, then z is a function of x. The resulting composite function is notated $g \circ f: \mathrm{X} \rightarrow \mathrm{Z}$, defined by $(g \circ f)(x)=g(f(x))$ for all x in X.
The notation $g \circ f$ is read as " g circle f ", or " g round f ", or " g composed with f ", or " g after f ", or " g following f ", or " g of f ". The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen domains and codomains, then $f \circ(g \circ h)=(f \circ g) \circ h$, where the parentheses serve to indicate that composition is to be performed first for the parenthesized functions. Since there is no distinction between the choices of placement of parentheses, they may be left off without causing any ambiguity.

Function Composition

Function Composition

X

Function Composition

$$
\mathrm{X} \xrightarrow{f}
$$

Function Composition

$$
\mathrm{X} \xrightarrow{f} \quad \mathrm{Y}
$$

Function Composition

$$
\mathrm{X} \quad \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g}
$$

Function Composition

$$
\mathrm{X} \quad \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z}
$$

Function Composition

x

Function Composition

Function Composition

$$
\begin{array}{lllll}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} \\
x & \xrightarrow{f} & y & &
\end{array}
$$

Function Composition

$$
\begin{array}{lllll}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} &
\end{array}
$$

Function Composition

$$
\begin{array}{ccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z
\end{array}
$$

Function Composition

Function Composition

$$
\begin{array}{lllll}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z \\
x & \xrightarrow{f} & & &
\end{array}
$$

Function Composition

$$
\begin{array}{ccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z \\
x & \xrightarrow{f} & f(x) & &
\end{array}
$$

Function Composition

$$
\begin{array}{ccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} &
\end{array}
$$

Function Composition

$$
\begin{array}{ccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x))
\end{array}
$$

Function Composition

$$
\begin{array}{cccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) &
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & & & \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & & \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x)
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
& \therefore & & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f) \\
\therefore \forall x & & & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f) \\
\therefore & \forall x \in \mathrm{X}, & & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f) \\
\therefore & \forall x \in X,(
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f) \\
\therefore & \forall x \in X,(g & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f) \\
\therefore & \therefore x \in \mathrm{X},(g \circ & & &
\end{array}
$$

Function Composition

$$
\begin{array}{rccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} \xrightarrow[\rightarrow]{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f) \\
& \therefore \forall x \in \mathrm{X},(g \circ f & &
\end{array}
$$

Function Composition

$$
\begin{array}{rccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} \xrightarrow[\rightarrow]{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f) \\
& \therefore \forall x \in \mathrm{X},(g \circ f) & &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x) \\
& &
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)= \\
&
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & X & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
& \therefore & \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x) & (g \circ f)(x)
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

Function Composition

$$
\begin{array}{cccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

((

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \underline{\longrightarrow} \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& ((h) &
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \underline{\longrightarrow} \\
\therefore & (g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x \xrightarrow{g \circ f} & (g \circ f)(x) \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \therefore(h \circ g)
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \therefore(h \circ g) \circ
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \therefore(h \circ g) \circ f
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \therefore(h \circ g) \circ f)
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \therefore(h \circ g) \circ f)(x)
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& ((h \circ g) \circ f)(x)=
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& ((h \circ g) \circ f)(x)=(
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
\therefore \forall & \\
& (h \circ g) \circ f)(x)=(h
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& ((h \circ g) \circ f)(x)=(h \circ
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \therefore(h \circ g) \circ f)(x)=(h \circ g
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \therefore(h \circ g) \circ f)(x)=(h \circ g)
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \therefore(h \circ g) \circ f)(x)=(h \circ g)(f
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
\therefore & (h \circ g) \circ f)(x)=(h \circ g)(f(x)
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
\therefore(h \circ g) \circ f)(x)=(h \circ g)(f(x))=h
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \underline{\longrightarrow} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
\therefore \forall f)(x) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
\therefore & (h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
\therefore(h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(
\end{array}
$$

Function Composition

$$
\begin{array}{rccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
\therefore \forall & (h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)
\end{array}
$$

Function Composition

$$
\begin{array}{rccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \xrightarrow{g \circ f} & z \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} & (g \circ f)(x) \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
\therefore(h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x)))
\end{array}
$$

Function Composition

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \quad \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =
\end{aligned}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \underline{\rightarrow} \\
\therefore & (g \circ f)(x) \\
& \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& \\
&
\end{array}
$$

Function Composition

$$
\begin{array}{rlccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & z(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \begin{array}{l}
(h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
\\
\\
=h(
\end{array}
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & z(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \left.\begin{array}{l}
(h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
\\
\\
=h((
\end{array}\right)
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & z(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \begin{array}{l}
(h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
\\
\\
=h((g
\end{array}
\end{array}
$$

Function Composition

$$
\begin{array}{rcccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & z(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \begin{array}{l}
(h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
\\
\\
=h((g \circ
\end{array}
\end{array}
$$

Function Composition

$$
\begin{array}{rlccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

Function Composition

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \quad \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)
\end{aligned}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
& \therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& h((g \circ f)(x)
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \left.\begin{array}{l}
(h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
\\
=h((g \circ f)(x))=(
\end{array}\right)
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & z(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& \begin{array}{l}
(h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
\\
=h((g \circ f)(x))=(h \circ
\end{array}
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \stackrel{g}{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \stackrel{g}{\rightarrow} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
& \therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \stackrel{g}{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore & \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f)
\end{array}
$$

Function Composition

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \quad \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))
\end{aligned}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & \mathrm{Z} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & z \\
\therefore & \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x)
\end{array}
$$

Function Composition

$$
\begin{array}{ccccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x)
\end{array}
$$

Function Composition

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \quad \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x
\end{aligned}
$$

Function Composition

$$
\begin{array}{llccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \quad \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in X,(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \quad \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in X,(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in X,((h
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \quad \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in X,(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in X,((h \circ
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \quad \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in X,(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in X,((h \circ g
\end{aligned}
$$

$$
\begin{array}{llccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} & \xrightarrow{g \circ f} \\
x & \xrightarrow{f} & y & \xrightarrow{g} & z & x & \mathrm{Z} \\
x & \xrightarrow{g \circ f} & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore & (g \circ f)(x) \\
\therefore x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=
\end{aligned}
$$

$$
\begin{array}{cccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} \\
x & \xrightarrow{g \circ f} & \mathrm{~g} & \xrightarrow{g} & z & x \\
x & \xrightarrow{g \circ f} & z \\
x & f(x) & \xrightarrow{g} & g(f(x)) & x & \xrightarrow{g \circ f} \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) & (g \circ f)(x) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
\therefore \forall x \in X,((h \circ g) \circ f)(x)=(
\end{array}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \xrightarrow{\text { gof }} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in X,((h \circ g) \circ f)(x)=(h \circ(
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \xrightarrow{\text { gof }} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in X,(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in X,((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x)
\end{aligned}
$$

$$
\begin{array}{cccccc}
\mathrm{X} & \xrightarrow{f} & \mathrm{Y} & \xrightarrow{g} & \mathrm{Z} & \mathrm{X} \\
x & \xrightarrow{g \circ f} & \mathrm{Z} \\
x & \xrightarrow{f} & f(x) & \xrightarrow{g} & z & x \\
\therefore \vec{l} & g(f(x)) & x \xrightarrow{g \circ f} & (g \circ f)(x) \\
\therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x))
\end{array}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in X,(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in X,((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g
\end{aligned}
$$

\[

\]

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} \quad f(x) \quad \xrightarrow{g} \quad g(f(x)) \quad x \quad \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in X,(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in X,((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f=
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f=h
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f=h \circ
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f=h \circ(
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f=h \circ(g
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f=h \circ(g \circ
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f=h \circ(g \circ f
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \quad \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f} \quad(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f=h \circ(g \circ f)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{f} \quad \mathrm{Y} \quad \xrightarrow{g} \quad \mathrm{Z} \quad \mathrm{X} \xrightarrow{\text { gof }} \quad \mathrm{Z} \\
& x \xrightarrow{f} \quad y \quad \xrightarrow{g} \quad z \quad x \xrightarrow{g \circ f} \quad z \\
& x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x)) \quad x \xrightarrow{g \circ f}(g \circ f)(x) \\
& \therefore \forall x \in \mathrm{X},(g \circ f)(x)=g(f(x)) \\
& ((h \circ g) \circ f)(x)=(h \circ g)(f(x))=h(g(f(x))) \\
& =h((g \circ f)(x))=(h \circ(g \circ f))(x) \\
& \therefore \forall x \in \mathrm{X},((h \circ g) \circ f)(x)=(h \circ(g \circ f))(x) \\
& (h \circ g) \circ f=h \circ(g \circ f)
\end{aligned}
$$

